Practical Guide to the Use of AI-Enabled Analytics in Research

Ce dossier présente un ensemble de guides pratiques concernant l'intelligence artificielle et les sources de données massives dans la recherche en chirurgie

JAMA Surgery, sous presse, 2025, article en libre accès

Résumé en anglais

A cornerstone of using big data is the application of statistical and analytic tools to gain insight from vast amounts of information. For researchers, this necessitates developing skills in data preparation, visualization, and reporting. Artificial intelligence (AI) and machine learning (ML) can assist researchers in writing code and conducting data analysis. Investigators can use AI-enabled analytics, which includes code completion, data visualization, statistics, and automatic ML (autoML), to improve their efficiency. The evolution of large language models (LLMs) provides further enhancement of these capabilities by allowing the use of natural language to interact directly with data to conduct and report research (Box).