Overall survival in patients with advanced non-small cell lung cancer with KRAS G12C mutation with or without STK11 and/or KEAP1 mutations in a real-world setting
Menée aux Etats-Unis dans un contexte de vie réelle à partir de données portant sur 2 715 patients atteints d'un cancer du poumon non à petites cellules de stade avancé avec mutation G12C au niveau du gène KRAS et présentant ou non une mutation au niveau des gènes STK11 et/ou KEAP1, cette étude analyse l'association entre la présence de ces mutations et la survie globale en fonction des traitements reçus (chimiothérapie et immunothérapie en monothérapie ou en combinaison)
Résumé en anglais
Background: KRAS mutations occur frequently in advanced non-small cell lung cancer (aNSCLC); the G12C mutation is the most prevalent. Alterations in STK11 or KEAP1 commonly co-occur with KRAS mutations in aNSCLC. Using real-world data, we assessed the effect of KRAS G12C mutation with or without STK11 and/or KEAP1 mutations on overall survival (OS) in patients with aNSCLC receiving cancer immunotherapy (CIT), chemotherapy, or both in first line (1L) and second line (2L).
Methods: Patients diagnosed with aNSCLC between January 2011 and March 2020 in a clinico-genomic database were included. Cox proportional hazards models adjusted for left truncation, baseline demographics and clinical characteristics were used to analyze the effect of STK11 and/or KEAP1 co-mutational status on OS in patients with KRAS wild-type (WT) or G12C mutation.
Results: Of 2715 patients with aNSCLC without other actionable driver mutations, 1344 (49.5%) had KRAS WT cancer, and 454 (16.7%) had KRAS G12C–positive cancer. At 1L treatment start, significantly more patients with KRAS G12C–positive cancer were female, smokers, and had non-squamous histology, a higher prevalence of metastasis and programmed death-ligand 1 positivity than those with KRAS WT cancer. Median OS was comparable between patients with KRAS G12C–positive and KRAS WT cancer when receiving chemotherapy or combination CIT and chemotherapy in the 1L or 2L. Median OS was numerically longer in patients with KRAS G12C vs KRAS WT cancer treated with 1L CIT (30.2 vs 10.6 months, respectively) or 2L CIT (11.3 vs 7.6 months, respectively). Co-mutation of STK11 and KEAP1 was associated with significantly shorter OS in patients receiving any type of 1L therapy, regardless of KRAS G12C mutational status.
Conclusions: This real-world study showed that patients with KRAS G12C–positive or KRAS WT cancer have similar OS in the 1L or 2L when treated with chemotherapy or combination CIT and chemotherapy. In contrast to aNSCLC patients with EGFR or ALK driver mutations, patients with KRAS G12C–positive cancer may benefit from CIT monotherapy. Co-mutation of STK11 and KEAP1 was associated with significantly shorter survival, independent of KRAS G12C mutational status, reflecting the poor prognosis and high unmet need in this patient population.