Characterizing the evolutionary dynamics of cancer proliferation in single-cell clones with SPRINTER

Menée à l'aide d'un algorithme utilisant des données de séquençage du génome entier portant sur 14 994 cellules de cancer du poumon non à petites cellules puis sur 61 914 cellules mammaires ou ovariennes cancéreuses, cette étude examine les caractéristiques de leur évolution et de leur prolifération

Nature Genetics, sous presse, 2024, article en libre accès

Résumé en anglais

Proliferation is a key hallmark of cancer, but whether it differs between evolutionarily distinct clones co-existing within a tumor is unknown. We introduce the Single-cell Proliferation Rate Inference in Non-homogeneous Tumors through Evolutionary Routes (SPRINTER) algorithm that uses single-cell whole-genome DNA sequencing data to enable accurate identification and clone assignment of S- and G2-phase cells, as assessed by generating accurate ground truth data. Applied to a newly generated longitudinal, primary-metastasis-matched dataset of 14,994 non-small cell lung cancer cells, SPRINTER revealed widespread clone proliferation heterogeneity, orthogonally supported by Ki-67 staining, nuclei imaging and clinical imaging. We further demonstrated that high-proliferation clones have increased metastatic seeding potential, increased circulating tumor DNA shedding and clone-specific altered replication timing in proliferation- or metastasis-related genes associated with expression changes. Applied to previously generated datasets of 61,914 breast and ovarian cancer cells, SPRINTER revealed increased single-cell rates of different genomic variants and enrichment of proliferation-related gene amplifications in high-proliferation clones.