CD300ld on neutrophils is required for tumour-driven immune suppression

Menée à l'aide de lignées de cellules cancéreuses (mélanome, carcinome du côlon, tumeur de Lewis et lymphome), de modèles murins ainsi que d'échantillons de sang, de mélanomes et de tissus adjacents issus de patients, cette étude met en évidence le rôle de la protéine CD300ld dans l'immunosuppression tumorale

Nature, sous presse, 2023, article en libre accès

Résumé en anglais

The immune-suppressive tumour microenvironment represents a major obstacle to effective immunotherapy1,2. Pathologically activated neutrophils, also known as polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), are a critical component of the tumour microenvironment and have crucial roles in tumour progression and therapy resistance2–4. Identification of the key molecules on PMN-MDSCs is required to selectively target these cells for tumour treatment. Here, we performed an in vivo CRISPR–Cas9 screen in a tumour mouse model and identified CD300ld as a top candidate of tumour-favouring receptors. CD300ld is specifically expressed in normal neutrophils and is upregulated in PMN-MDSCs upon tumour-bearing. CD300ld knockout inhibits the development of multiple tumour types in a PMN-MDSC–dependent manner. CD300ld is required for the recruitment of PMN-MDSCs into tumours and their function to suppress T cell activation. CD300ld acts via the STAT3-S100A8/A9 axis, and knockout of Cd300ld reverses the tumour immune-suppressive microenvironment. CD300ld is upregulated in human cancers and shows an unfavourable correlation with patient survival. Blocking CD300ld activity inhibits tumour development and has synergistic effects with anti-PD1. Our study identifies CD300ld as a critical immune suppressor present on PMN-MDSCs, being required for tumour immune resistance and providing a potential target for cancer immunotherapy.